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Abstract 

We derive the Schrödinger eigen-energy dispersion relation for electrons on a two dimensional 

sheet with a one dimensional periodic lattice of quantum antidot potential barriers, in the presence of a 

strong perpendicular magnetic field. This system is Landau quantized by the high magnetic field and 

we determine the associated Green's function for propagation along the axis of the antidot lattice, 

which we use to formulate the dispersion relation for the energy spectrum analytically in a closed form 

in terms of the Jacobi Theta Function (3rd kind). An approximate solution for the Landau quantized 

eigen-energies is obtained in terms of Laguerre polynomials, and the development of Landau 

minibands is explicitly exhibited. 

 

1. Introduction 

Much of the world of science and engineering 

is strongly focused on research on 

semiconductor nanostructures, including 

quantum dots, wires, wells, etc., as promising 

features in the thrust for a new generation of 

electronic devices to carry forward the 

technological revolution currently in progress. 

The present work contributes to this in dealing 

with a lattice of quantum antidots: Quantum dot 

systems have been under exploration as a 

mechanism for quantum transport [1,2] for quite 

some time. In regard to the inclusion of a 

magnetic field, its role as a probe of the 

properties of matter has always been well 

appreciated [3], but its importance is further 

amplified by its splintering of the energy spectrum 

into a multitude of Landau eigenstates [4], which 

can influence electronic conduction in quantum 

dot/antidot transport (beyond the relatively poor 

semiclassical treatment of the magnetic field 

restricted by an approximation limited to the 

Peierls phase factor alone). Moreover, the role of 

a row of quantum antidots in the form of a lattice 

[5] brings into view the formation of Landau 

miniband structure, as discussed in this paper. 

(Quantum dot applications have also been 

discussed in graphene [6] and have even 

reached into biology [7] and medicine [8]. 

Our study of an antidot lattice in a magnetic 

field begins with a "first-principles" derivation of 

the associated magnetic field Green's function, 

obtained explicitly in a closed form analytic 

representation in terms of known functions for 

propagation along the axis of the antidot lattice. 

This Green's function can serve as a basic 

element in facilitating further transport 

calculations. We have also extracted the desired 

eigen-energy information by an analysis of the 

Green's function (including appropriate 

consideration of the Peierls phase), obtaining the 

desired spectral information - which shows that 

there is a proliferation of eigen-energy states in 

Landau minibands that must be taken into 

account in quantum antidot transport, a fact often 

neglected. This concise analysis avoids potential 

calculational difficulties using a tractable model 

for quantum antidots in a lattice array, subject to 

Landau quantization. Similar phenomenology in a 

different system involving a superconductor with 

an Abrikosov lattice of vortices was recently 

discussed by Chen and Fal'ko [9]. 

2. Magnetic Field Green’s Function in an 

Anti-Dot Lattice  

Considering a two-dimensional (2D) sheet of 

nonrelativistic Schrödinger electrons in a lattice 

formed by a one dimensional periodic array of 
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quantum antidot potential barriers, we examine 

the role of a quantizing magnetic field B 

perpendicular to the 2D sheet. In this analysis we 

explicitly construct the appropriate Green's 

function 𝐺(𝑥1, 𝑥2; 𝑦1, 𝑦2; 𝜔) describing the Landau-

quantized electron dynamics for this 2D Krönig-

Penney-type model [10] of a 1D array of antidots 

in a strong magnetic field. We examine its 

frequency poles to establish the dispersion 

relation for the eigen-energy spectrum of this 2D 

system with an array of antidots represented by a 

row of Dirac-delta functions in a high magnetic 

field. 

In accordance with the Krönig-Penney model 

for an antidot lattice, we introduce an infinite 

periodic lattice array of identical antidot potential 

barriers on the x-axis at xn = nd, 𝑦 ≡ 0 as  

 

𝑈(𝑟) = 𝑈(𝑥, 𝑦) =  𝛼 ∑ 𝛿(𝑥 − 𝑛𝑑)𝛿(𝑦)

∞

𝑛=−∞

,         (1) 

 

where 𝛼>0 is the product of the antidot potential 

barrier height (U0) of a typical barrier times its 

area (a2), and d is the uniform spacing of the 

barriers. The 2D Schrödinger Green's function in 

frequency representation is given by the integral 

equation 

 

𝐺(𝑥1, 𝑥2; 𝑦1 , 𝑦2; 𝜔) = 𝐺0(𝑥1, 𝑥2; 𝑦1, 𝑦2; 𝜔)  

                               + ∫ 𝑑𝑥3 ∫ 𝑑𝑦3𝐺0(𝑥1, 𝑥3; 𝑦1 , 𝑦3; 𝜔)   

×𝑈(𝑥3, 𝑦3)𝐺(𝑥3, 𝑥2; 𝑦3, 𝑦2; 𝜔); (2) 

 

or (suppress 𝜔) 

 

𝐺(𝑥1, 𝑥2; 𝑦1 , 𝑦2; 𝜔) = 𝐺0(𝑥1, 𝑥2; 𝑦1, 𝑦2; 𝜔)  

+ 𝛼 ∑ 𝐺0(𝑥1, 𝑛𝑑; 𝑦1, 0)𝐺(𝑛𝑑; 𝑥2; 0, 𝑦2),

∞

𝑛=−∞

            (3) 

      

where 𝐺0(𝑟1,⃗⃗⃗⃗⃗ 𝑟2⃗⃗⃗⃗ ) is the infinite-space Green’s 

function for 2D electrons in a perpendicular 

magnetic field in the complete absence of 

potential barriers. Note that the solution for 

 𝐺(𝑥1, 𝑥2; 𝑦1, 𝑦2) devolves upon the determination 

of 𝐺(𝑛𝑑, 𝑥2; 0, 𝑦2) at a discreet set of values. 

Therefore we set 𝑥1 = 𝑚𝑑, and 𝑦1 = 0 in Eq.(3): 

 

𝐺(𝑚𝑑, 𝑥2; 0, 𝑦2) = 𝐺0(𝑚𝑑, 𝑥2; 0, 𝑦2) 

           +𝛼 ∑ 𝐺0(𝑚𝑑, 𝑛𝑑;  0,0)𝐺(𝑛𝑑; 𝑥2; 0, 𝑦2).   (4)

∞

𝑛=−∞

 

 

Addressing the presence of a perpendicular 

magnetic field, we limit our attention to electron 

propagation confined to the x-axis of the lattice, 

with 𝑦 ≡ 𝑦1 ≡ 𝑦2 ≡ 0. In this case, the infinite-

space magnetic field Green's function 

G0 (md, nd;  0,0) is spatially translationally 

invariant and 

 

            𝐺0 (𝑚𝑑, 𝑛𝑑;  0,0) =  𝐺0̇([𝑚 − 𝑛]𝑑),          (5)         

 

acts as a translationally invariant position-

space matrix, indicated by an overhead dot on 

the right of Eq.(5). Suppressing 𝑥2, 𝜔 for the 

moment, these equations may be solved using 

the periodicity of the lattice in a Fourier series 

defined by (r are integers here) 

 

𝐺̃(𝑝) =  ∑ 𝑒𝑖𝑝𝑑𝑟𝐺(𝑟𝑑)

∞

𝑟=−∞

                                       (6) 

                          

 

with 

 

𝐺(𝑚𝑑) =
𝑑

2𝜋
∫ 𝑑𝑝 𝑒−𝑖𝑝𝑑𝑚𝐺̃(𝑝),                        (7)

𝜋/𝑑

−𝜋/𝑑

 

          

and 

 

𝐺0̇([𝑚 − 𝑛]𝑑) =
𝑑

2𝜋
∫ 𝑑𝑝 𝑒−𝑖𝑝𝑑[𝑚−𝑛]𝐺0̃

̇ (𝑝).

𝜋/𝑑

−𝜋/𝑑

    (8) 

 

Correspondingly, Eq. (4) becomes 

𝐺̃(𝑝) = 𝐺̃0(𝑝) + 𝛼𝐺0̃
̇ (𝑝) ∑ 𝑒𝑖𝑝𝑑𝑛𝐺(𝑛𝑑)

∞

𝑛=−∞

             

=  𝐺̃0(𝑝)

+
𝛼𝑑

2𝜋
𝐺0̃

̇ (𝑝) ∫ 𝑑𝑞 ( ∑ 𝑒𝑖𝑛[𝑝−𝑞]𝑑 

∞

𝑟=−∞

) 𝐺̃(𝑞)

𝜋/𝑑

−𝜋/𝑑

. 

                                                                        (9) 
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Employing the Poisson Sum Formula as 

 

∑ 𝑒𝑖𝑛[𝑝−𝑞]𝑑

∞

𝑛=−∞

=
2𝜋

𝑑
∑ 𝛿 (𝑝 − 𝑞 −

2𝜋𝑚

𝑑
) ,

∞

𝑚=−∞

 

 

we have  

𝐺̃(𝑝) = 𝐺̃0(𝑝) + 𝛼 ∑ ∫ 𝑑𝑞

𝜋
𝑑

−
𝜋
𝑑

∞

𝑚=−∞

 

×𝛿 (𝑝 − 𝑞 −
2𝜋𝑚

𝑑
) 𝐺0̃

̇ (𝑝)𝐺̃(𝑞).           (10)    

 

Since the q-integral is extended only over the 

first Brillouin zone, 

 

𝐺̃(𝑝) = 𝐺̃0(𝑝) + 𝛼𝐺0̃
̇ (𝑝)𝐺̃(𝑝),             (11) 

 

with the solution given by (restore 𝑥2, ω) 

 

𝐺̃(𝑝; 𝑥2; 0,0; 𝜔)

= [1 − 𝛼𝐺0̃
̇ (𝑝; 0,0; 𝜔)]

−1

𝐺̃0(𝑝; 𝑥2; 0,0; 𝜔).     (12) 

 

Taken jointly with Eq.(7) and Eq.(3), the result 

of Eq.(12) completes the description of the 

Green's function for the 2D Kr𝑜̈nig-Penney-like 

model for a 1D antidot lattice, for electron 

propagation confined to the axis of the lattice 

(𝑦 ≡ 𝑦1 ≡ 𝑦2 ≡ 0 and we suppress further 

reference to y): 

 

𝐺(𝑥1, 𝑥2; 𝜔) = 𝐺0(𝑥1, 𝑥2; 𝜔) 

  + 𝛼 ∑ 𝐺0(𝑥1, 𝑛𝑑; 𝜔)
𝑑

2𝜋

∞

𝑛=−∞

∫ 𝑑𝑝 𝑒−𝑖𝑝𝑑𝑛 

𝜋/𝑑

−𝜋/𝑑

× 

 

[1 − 𝛼𝐺0̃
̇ (𝑝; 0,0; 𝜔)]

−1

𝐺̃0(𝑝; 𝑥2; 𝜔).                  (13) 

 

The 2D Schr𝑜̈dinger Green's function, 𝐺0, in a 

perpendicular magnetic field in the absence of 

any potential barriers has been determined in 

position representation as [11]: 
 

𝐺0(𝑟, 𝑟′⃗⃗⃗⃗ ; 𝑡, 𝑡′) = 𝐶(𝑟,⃗⃗⃗ 𝑟′⃗⃗⃗⃗ )𝐺0
′ (𝑟 − 𝑟′⃗⃗⃗⃗ ; 𝑡 − 𝑡′),         (14) 

 

where the Peierls phase factor 𝐶(𝑟,⃗⃗⃗ 𝑟′⃗⃗⃗⃗ ) embodies 

all non-spatially-translationally invariant structure 

and gauge dependence (B is the magnetic field), 

 

𝐶(𝑟,⃗⃗⃗ 𝑟′⃗⃗⃗⃗ ) = 𝑒𝑥𝑝 [
𝑖𝑒

2ℏ𝑐
𝑟 ∙ 𝐵×𝑟′⃗⃗⃗⃗ − ∅(𝑟) + ∅(𝑟′⃗⃗⃗⃗ )] , (15)  

 

and ∅(𝑟) is an arbitrary gauge function which 

we discard. It is important to note that 𝐶(𝑟,⃗⃗⃗ 𝑟′⃗⃗⃗⃗ ) 

enters G0(𝑚𝑑; 𝑛𝑑) on the right of Eq.(4) in the 

form 𝐶(𝑚𝑑𝑥̂, 𝑛𝑑𝑥̂) = 𝑒𝑥𝑝 [
𝑖𝑒

2ℏ𝑐
𝑚𝑑𝑥̂ ∙ 𝐵×𝑛𝑑𝑥̂] = 1 

since 𝑥̂ ∙ 𝐵×𝑥̂ = 0 for our choice 𝑦 ≡ 𝑦1 ≡ 𝑦2 ≡ 0. 

Therefore 𝐶(𝑟,⃗⃗⃗ 𝑟′⃗⃗⃗⃗ ) does not enter the denominator 

factor of Eq.(13), although it may be present in 

the numerator factors of the final Green's 

function, except when eliminated by restricting 

considerations to 𝑟//𝑟′⃗⃗⃗⃗ , as we have done by 

taking 𝑦 ≡ 0 for propagation on the lattice axis. 

This means that the eigen-energy spectrum given 

by the vanishing of the denominator is unaffected 

by 𝐶(𝑟, 𝑟′⃗⃗⃗⃗ ). 

The solution for the translationally invariant 

part of the retarded Green’s function, 𝐺0
′ (𝐑, ϖ), is 

given by11 (𝑹 =  𝑟 −  𝑟′⃗⃗⃗⃗ ; 𝑋 = 𝑥 − 𝑥′; 𝑌 = 𝑦 − 𝑦′;  

ℏ →  1; frequency representation) 

 

𝐺0
′ (𝐑; ω) =

−𝑚𝜔𝑐

4𝜋
∫ 𝑑𝜏

∞

0

 

×
𝑒𝑖𝜔𝜏

sin(𝜔𝑐𝜏 2⁄ )
exp {

𝑖𝑚𝜔𝑐[𝑋2 + 𝑌2]

4tan (𝜔𝑐𝜏/2)
},   (16) 

where m is the mass and 𝜔𝑐 is the cyclotron 

frequency. Expanding the 𝜏-integrand as a 

generator of Laguerre polynomials [12], Ln, we 

obtain another useful representation as 

 

𝐺0
′ (𝐑; ω) =

𝑚𝜔𝑐

2𝜋
exp(− 𝑚𝜔𝑐𝑅2 4⁄ ) 

× ∑ 𝐿𝑛 (
𝑚𝜔𝑐𝑅2

2
)

1

𝜔 − (𝑛 +
1
2

) 𝜔𝑐

.

∞

𝑛=0

       (17) 

3. Energy Spectrum: Landau Minibands 

The energy spectrum of the 2D Kro𝑛̈ig-

Penney-type model for an antidot lattice in a 

normal magnetic field is given by the frequency 

poles of the Green’s function arising from the 
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vanishing of the denominator on the right hand 

side of Eq. (12): 

 

[1 − 𝛼𝐺0̃
̇ (𝑝; 0, 0; 𝜔)] = 0.                 (18) 

 

Employing Eq. (16) and forming the Fourier 

series of Eq.(6) yields 

𝐺0̃
̇ (𝑝; 0, 0; 𝜔) = −

𝑚𝜔𝑐

4𝜋
∑ 𝑒𝑖𝑝𝑑𝑟

∞

𝑟=−∞

 

× ∫ 𝑑𝑇
𝑒𝑖𝜔𝑇

sin (𝜔𝑐𝑇 2)⁄
 exp

∞

0

[
𝑖𝑚𝜔𝑐𝑑2𝑟2

4 tan(𝜔𝑐𝑇 2)⁄
] . (19) 

 

Noting that the 𝛵-integral is a half-time-axis 

transform of a periodic function, the semi-infinite 

range of integration may be divided into individual 

periods which are summed and translated to the 

fundamental interval. Defining 𝓏 = 𝜔𝑐𝛵/2, the 

result takes the form 

 

𝐺0̃
̇ (𝑝; 0, 0; 𝜔) = −

𝑚

2𝜋
[∑(−1)𝑛 exp (

𝑖2𝜋𝜔𝑛

𝜔𝑐

)

∞

𝑛=0

] 

× ∫ 𝑑𝓏
exp(𝑖2𝜔𝓏 𝜔𝑐⁄ )

sin(𝓏)

𝜋

0

∑ 𝑒𝑖𝑝𝑑𝑟

∞

𝑟=−∞

[
𝑖𝑚𝜔𝑐𝑑2𝑟2

4 tan(𝓏)
]. 

                                                           (20) 

 

The n-sum is readily evaluated as 

 

∑(−1)𝑛 exp (𝑖2𝜋𝜔𝑛 𝜔𝑐)⁄

∞

𝑛=0

=
exp(−𝑖𝜋𝜔/𝜔𝑐)

2cos(𝜋𝜔/𝜔𝑐)
,   (21) 

 

and the r-sum is just the Jacobi Theta function 

of the third kind, Θ(𝛼, 𝛽): This yields the 

dispersion relation for the eigen-energies of the 

2D Kro𝑛̈ig-Penney-type model of an antidot 

lattice in a magnetic field as (restore ℏ) 

 

1 = −
𝛼𝑚

4𝜋ℏ2

exp (−𝑖𝜋𝜔 𝜔𝑐)⁄

cos (𝜋𝜔 𝜔𝑐)⁄
 

× ∫ 𝑑𝓏
exp (𝑖2𝜔𝓏 𝜔𝑐)⁄

sin(𝓏)

𝜋

0

Θ (
𝑝𝑑

2𝜋
;

𝑚𝜔𝑐𝑑2

4𝜋ℏ tan(𝓏)
) . (22) 

 

It should be noted that the limit 𝑑 → 0 results 

in divergence of the 𝛵-integral of Eq. (19). 

Consequently, the limit of the Jacobi Theta 

function diverges as 𝑑 → 0. This is an artifact of 

the δ-function single-point confinement potentials 

assumed for the antidots. More realistically, a 

spatial spreading of the δ-function antidot 

potentials gives rise to an integral equation which 

“smears” the Green’s function solution over its 

area, 𝑎2, rendering the result finite. This 

divergence may be circumvented by considering 

the restriction 𝑑 ≥ 𝑎 > 0 in the results above. 

Alternatively, one can employ Eq. (17) jointly 

with Eq.(6) to rewrite the dispersion relation in the 

form 

1 =
𝛼𝑚𝜔𝑐

2𝜋ℏ2
∑ 𝑒𝑖𝑝𝑑𝑟

∞

𝑟=−∞

exp[−𝑚𝜔𝑐𝑑2𝑟2 4ℏ⁄ ] 

× ∑
𝐿𝑛(𝑚𝜔𝑐𝑑2𝑟2 2ℏ⁄ )

𝜔 − (𝑛 + 1 2⁄ )𝜔𝑐

∞

𝑛=0

.  (23) 

 

(The divergence discussed above is now 

manifested in the 𝑟-sum as 𝑑 → 0, and it can be 

circumvented by the same restriction.) For small 

dot radius (
𝑎𝑚

2𝜋ℏ2 ≪ 1), Eq.(23) requires that 𝜔 →

𝜔𝑛 closely approach the pole position (𝑛 +

1/2)𝜔𝑐, so that particular pole is the predominant 

influence in determining the energy root 𝜔𝑛: 

Consequently, a reasonable first approximation 

may be undertaken dropping all other terms of 

the 𝑛-sum, leading to the result 

 

𝜔𝑛 ≅ (𝑛 + 1 2⁄ )𝜔𝑐 +
𝛼𝑚𝜔𝑐

2𝜋ℏ2
∑ 𝑒𝑖𝑝𝑑𝑟

∞

𝑟=−∞

 

× exp[−𝑚𝜔𝑐𝑑2𝑟2 4ℏ⁄ ]𝐿𝑛(𝑚𝜔𝑐𝑑2𝑟2 2ℏ⁄ ). (24) 

 

When 
𝑚𝜔𝑐𝑑2

4ℏ
> 1, it suffices to retain only 𝑟 =

−1, 0, 1 of the 𝑟-sum: Applying this to a GaAs-

based antidot lattice having antidot potential 

height about 100𝑚𝑒𝑉 and diameter 2nm, we find 

a proliferation of subband energies that are 

quantized by the magnetic field with frequencies 

𝜔𝑛(𝑛 = 0, 1, 2 … ∞) approximately given by 

𝜔𝑛 = (𝑛 + 1 2⁄ )𝜔𝑐 +
𝛼𝑚𝜔𝑐

2𝜋ℏ2
(1 + 2cos(𝑝𝑑) 

× exp[−𝑚𝜔𝑐𝑑2 4ℏ⁄ ]𝐿𝑛(𝑚𝜔𝑐𝑑2 2ℏ⁄ )), (25) 

 

for the case in which the lattice period 𝑑 is 

larger than the orbit radius of the lowest Landau 

level. Eq. (25) indicates that the antidot lattice 
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broadens each Landau eigenstate into a subband 

of width 

 

∆𝜔𝑛 =
2𝛼𝑚𝜔𝑐

𝜋ℏ2
 

×exp[−𝑚𝜔𝑐𝑑2 4ℏ⁄ ]𝐿𝑛(𝑚𝜔𝑐𝑑2 2ℏ⁄ ), (26) 

 

and it generates an effective mass in the 

neighborhood of the 𝑛𝑡ℎ subband minimum 𝑝 =

𝜋/𝑑 given by 

 

1

𝑚𝑛
∗

=
𝑑2∆𝜔𝑛

2ℏ
=

𝑑2∆𝐸𝑛

2ℏ2
.    (27) 

4. Conclusions 

In summary, this work has addressed the role 

of a normal quantizing magnetic field on two-

dimensional Schrödinger electrons in an anti-dot 

lattice. The antidots are modeled by a row of 

uniformly spaced Dirac delta-function potential 

profiles on the 𝑥-axis, and the associated Green’s 

function was formulated as an integral equation. 

It was seen to devolve upon a discrete matrix 

equation that was solved exactly for propagation 

confined to the axis of the lattice (due to the 

simplification of the Peierls phase factor 

𝐶(𝑟, 𝑟′⃗⃗⃗⃗ ) → 1 with 𝑦 ≡ 0). The frequency poles of 

this Green’s function describe the eigenenergy 

dispersion relation, which was exhibited in closed 

form in terms of the Jacobi Theta function of the 

third kind. An alternative formulation of the 

dispersion relation was presented in terms of 

Laguerre polynomials, and was solved 

approximately, exhibiting the splintered 

proliferation of Landau quantized eigenstates. 

These explicit results exhibit the spreading of the 

discrete 𝜔𝑛-energy eigenvalues into Landau 

minibands associated with lattice periodicity, and 

the effective masses near the subband minima 

were determined as well. 
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